Repression of Dpp targets in the Drosophila wing by Brinker.

نویسندگان

  • Stephanie E Winter
  • Gerard Campbell
چکیده

Patterning along developing body axes is regulated by gradients of transcription factors, which activate or repress different genes above distinct thresholds. Understanding differential threshold responses requires knowledge of how these factors regulate transcription. In the Drosophila wing, expression of genes such as omb and sal along the anteroposterior axis is restricted by lateral-to-medial gradients of the transcriptional repressor Brinker (Brk). omb is less sensitive to repression by Brk than sal and is consequently expressed more laterally. Contrary to previous suggestions, we show that Brk cannot repress simply by competing with activators, but requires specific repression domains along with its DNA-binding domain. Brk possesses at least three repression domains, but these are not equivalent; one, 3R, is sufficient to repress omb but not sal. Thus, although sal and omb show quantitative differences in their response to Brk, there are qualitative differences in the mechanisms that Brk uses to repress them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transducing the Dpp Morphogen Gradient in the Wing of Drosophila Regulation of Dpp Targets by brinker

Dpp, a TGFbeta, organizes pattern in the Drosophila wing by acting as a graded morphogen, activating different targets above distinct threshold concentrations. Like other TGFbetas, Dpp appears to induce transcription directly via activation of a SMAD, Mad. However, here we demonstrate that Dpp can also control gene expression indirectly by downregulating the expression of the brinker gene, whic...

متن کامل

Repression of dpp targets by binding of brinker to mad sites.

Signaling by decapentaplegic (Dpp), a Drosophila member of the transforming growth factor (TGF) beta superfamily of growth factors, has recently been shown to activate targets such as vestigial (vg) indirectly through negative regulation of brinker (brk). Here we show that the Brk protein functions as a repressor by binding to Dpp response elements. The Brk DNA binding activity was localized to...

متن کامل

Bridging Decapentaplegic and Wingless signaling in Drosophila wings through repression of naked cuticle by Brinker.

Wnts and bone morphogenetic proteins (BMPs) are signaling elements that are crucial for a variety of events in animal development. In Drosophila, Wingless (Wg, a Wnt ligand) and Decapentaplegic (Dpp, a BMP homolog) are thought to function through distinct signal transduction pathways and independently direct the patterning of the wing. However, recent studies suggest that Mothers against Dpp (M...

متن کامل

Brinker requires two corepressors for maximal and versatile repression in Dpp signalling.

decapentaplegic (dpp) encodes a Drosophila transforming growth factor-beta homologue that functions as a morphogen in the developing embryo and in adult appendage formation. In the wing imaginal disc, a Dpp gradient governs patterning along the anteroposterior axis by inducing regional expression of diverse genes in a concentration-dependent manner. Recent studies show that responses to graded ...

متن کامل

Growth regulation by Dpp: an essential role for Brinker and a non-essential role for graded signaling levels.

Morphogens can control organ development by regulating patterning as well as growth. Here we use the model system of the Drosophila wing imaginal disc to address how the patterning signal Decapentaplegic (Dpp) regulates cell proliferation. Contrary to previous models, which implicated the slope of the Dpp gradient as an essential driver of cell proliferation, we find that the juxtaposition of c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 131 24  شماره 

صفحات  -

تاریخ انتشار 2004